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Quantum Error Correction

• Quantum computers are powerful, but present physical challenges –
decoherence, noise

• Large-scale implementations require quantum error correction

• Apply projective measurements as syndrome measurement to counteract error

• Transitions allow us to study competing behavior between projective
measurements and long-range entanglement to determnine feasible rate of
measurement
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Z2 Transverse Field Ising Model

Hamiltonian H given as

H = −J(
∑
{i ,j}

ZiZj + g
∑
i

Xi )

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
• Nearest neighbor interactions described by alignment of Z spins

• Influence from external magnetic field in X direction

• Two phases: order and disorder
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Z2 Projective Transverse Field Ising Model

Substitute ZiZj → ΠZZ
i ,j , Xi → ΠX

i ;
random time evolution, for 0 ≤ p ≤ 1

• Measure X on each site w.p. p

• Measure ZZ on neighboring sites
w.p. 1− p

• Phase transitions in entanglement

(Assume periodic boundary conditions
and 1D)

Lang and Büchler, Physical Review B,
2020
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Quantifying Entanglement

Two main measures of entanglement in a system {s1, . . . , sn}:

Definition

Entanglement Entropy: Measure of quantum entanglement between
complementary subsystems of a bipartite state

S(ρA) = −Tr(ρA log2 ρA)

Let A = {s1, . . . , sn/2}.

Definition

Mutual Information: Measure of correlation between two subsystems of a
quantum state

I (A;B) = S(ρA) + S(ρB)− S(ρAB)

Let A = s1,B = sn/2.
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Z2 Entanglement Transition

Lang and Büchler, Physical Review B, 2020
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Questions

• How can this model be generalized to higher (composite) dimensional qudits
(namely Z4)?

• What entanglement-based phase transitions occur in higher-dimensional
systems?
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Generalizing to Z4 Model

Define Pauli X ,Z for four-state qudits as follows:

X =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0



Z =


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i


• X → X ,ZZ → ZZ†

• Introduce third competing measurement: X 2,Z2Z2
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Efficient Classical Simulation of Qudit Chain

Need to simulate systems with n ∼ 100 qudits
• Density matrix simulation – matrix dim scales as 2n × 2n

• Complexity: O(poly(2n))

• Clifford simulation – need to perform Gaussian elimination on n × n matrix.
• Complexity: O(n3)

• Cluster model – update rule iterates over each site
• Complexity: O(n)
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Z4 Cluster Model

Keep tracks of two different types of clusters:

1 Z2 clusters – Formed using either Z2Z2 or ZZ† and can be destroyed with
X measurements.

2 Z4 clusters – Can only be formed using ZZ† and can be destroyed with
either X or X 2 measurements.

Can represent state by storing two mappings (one for Z2 and Z4) from qudit sites
to “colors” corresponding to which cluster each site is part of
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Z2 Clusters

Z2Z2 and ZZ† measurements create/merge Z2 clusters:

Z2Z2/ZZ†

Z2Z2/ZZ†

X removes a site from a Z2 cluster

X
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Z4 Clusters

ZZ† measurements create/merge Z4 clusters:

ZZ†

ZZ†

X and X 2 measurements remove a site from a Z4 cluster

X/X 2
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Entanglement Measurement

Values must be sample-averaged over thousands of trajectories
• Entanglement Entropy S({s1, . . . , sn/2})

1 Partition qudit chain into two halves
2 Count Z2 and Z4 clusters which cross the cut

• Mutual Information I (s1; sn/2)

1 For each cluster type, check if the two qudits are in the same cluster
2 If they are in different clusters, do nothing to the mutual information.
3 If there are no other qudits in the same cluster, add 2 to the total information,

otherwise add 1.
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Entanglement Entropy
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Mutual Information
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Phase Diagram Comparison

X ZZ†

X 2,Z2Z2

X ZZ†

X 2,Z2Z2
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Coupled Z2 × Z2 PTIM

Can the Z4 entanglement transitions be modeled using two coupled Z2 chains?

Instead of a chain of 4-state qudits, consider two coupled chains of qubits:

X → X (1),X (2)

ZZ† → Z (1)Z (1),Z (2)Z (2)

X 2,Z2Z2 → X (1)X (2),Z (1)Z (1)Z (2)Z (2)

For the entanglement transitions we are studying, we can develop an
equivalent cluster model for Z2 × Z2

Are these two models completely equivalent in terms of entanglement behavior?
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Interlayer Entropy

Z (1)Z (1)

Z (2)Z (2)

ZZ†



Motivation

Background and
Theory

Methods

Results

Conclusions

Altogether, we conclude the following:

• Z4 has three phases

• Z4 has different symmetry from equivalent clock model

• Z4 and Z2 × Z2 have equivalent entanglement transitions

• Z4 and Z2 × Z2 differ in interlayer entropy
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