Caltech

Motivation

Background and Theory

Methods

Poculte

Exploring Entanglement Transitions in the 4-Level Qudit Projective Transverse Field Ising Model

Savar Sinha^{1, 2} Nat Tantivasadakarn²

¹Computing + Mathematical Sciences California Institute of Technology

²Division of Physics, Mathematics and Astronomy California Institute of Technology

Southern California Conference for Undergraduate Research

Caltech Table of Contents

Background a

Method

Method

Motivation

2 Background and Theory

3 Methods

Caltech Table of Contents

Motivation

Background at Theory

Method

Dogulto

- Motivation
- 2 Background and Theory
- 3 Methods
- 4 Result

Quantum Error Correction Caltech

Motivation

- Quantum computers are powerful, but present physical challenges decoherence, noise
- Large-scale implementations require quantum error correction
- Apply projective measurements as syndrome measurement to counteract error
- Transitions allow us to study competing behavior between projective measurements and long-range entanglement to determine feasible rate of measurement

Caltech Table of Contents

Motivation

Background and Theory

Method

Danulka

- Motivation
- 2 Background and Theory
- 3 Methods
- 4 Result

Motivation

Background and Theory

Methods

Results

Hamiltonian H given as

$$H = -J(\sum_{\{i,j\}} Z_i Z_j + g \sum_i X_i)$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Nearest neighbor interactions described by alignment of Z spins
- Influence from external magnetic field in X direction
- Two phases: order and disorder

Caltech \mathbb{Z}_2 Projective Transverse Field Ising Model

/otivation

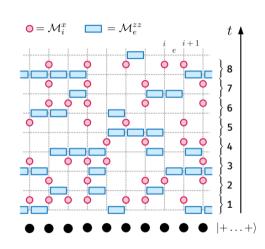
Background and Theory

Methods

D 1.

Substitute $Z_i Z_j \to \Pi_{i,j}^{ZZ}$, $X_i \to \Pi_i^X$; random time evolution, for $0 \le p \le 1$

- Measure X on each site w.p. p
- Measure ZZ on neighboring sites w.p. 1-p
- Phase transitions in entanglement (Assume periodic boundary conditions and 1D)



Lang and Büchler, Physical Review B, 2020

Caltech
Motivation
Background ar Theory
Methods
Results

Quantifying Entanglement

Two main measures of entanglement in a system $\{s_1, \ldots, s_n\}$:

Definition

Entanglement Entropy: Measure of quantum entanglement between complementary subsystems of a bipartite state

$$S(
ho_A) = -\operatorname{Tr}(
ho_A \log_2
ho_A)$$

Let $A = \{s_1, \ldots, s_{n/2}\}.$

Let $A = s_1, B = s_{n/2}$.

Definition

Mutual Information: Measure of correlation between two subsystems of a quantum state

tate
$$I(A, B) = S(a_1) + S(a_2) + S(a_3)$$

 $I(A:B) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$

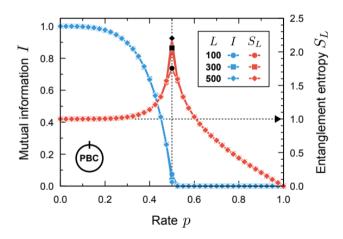
Caltech \mathbb{Z}_2 Entanglement Transition

Motivation

Background and Theory

Methods

Results



Lang and Büchler, Physical Review B, 2020

Caltech Questions

Motivation

Background and Theory

Methods

- How can this model be generalized to higher (composite) dimensional qudits (namely \mathbb{Z}_4)?
- What entanglement-based phase transitions occur in higher-dimensional systems?

Background and Theory

Define Pauli \mathcal{X}, \mathcal{Z} for four-state gudits as follows:

$$\mathcal{X} = egin{pmatrix} 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathcal{Z} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & i & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -i \end{pmatrix}$$

- $X \to \mathcal{X}.ZZ \to \mathcal{Z}Z^{\dagger}$
- Introduce third competing measurement: \mathcal{X}^2 , $\mathcal{Z}^2\mathcal{Z}^2$

Table of Contents

Mativation

Background a

Caltech

Methods

_ .

- 1 Motivation
- 2 Background and Theory
- 3 Methods
- 4 Result

Caltech

Efficient Classical Simulation of Qudit Chain

Methods

Need to simulate systems with $n \sim 100$ gudits

- Density matrix simulation matrix dim scales as $2^n \times 2^n$
 - Complexity: $\mathcal{O}(\text{poly}(2^n))$
- Clifford simulation need to perform Gaussian elimination on $n \times n$ matrix.
 - Complexity: $\mathcal{O}(n^3)$
- Cluster model update rule iterates over each site
 - Complexity: $\mathcal{O}(n)$

 ${\sf Methods}$

Methods

Keep tracks of two different types of clusters:

- ① \mathbb{Z}_2 clusters Formed using either $\mathcal{Z}^2\mathcal{Z}^2$ or $\mathcal{Z}\mathcal{Z}^\dagger$ and can be destroyed with \mathcal{X} measurements.
- 2 \mathbb{Z}_4 clusters Can only be formed using $\mathcal{Z}\mathcal{Z}^\dagger$ and can be destroyed with either \mathcal{X} or \mathcal{X}^2 measurements.

Can represent state by storing two mappings (one for \mathbb{Z}_2 and \mathbb{Z}_4) from qudit sites to "colors" corresponding to which cluster each site is part of

Caltech \mathbb{Z}_2 Clusters

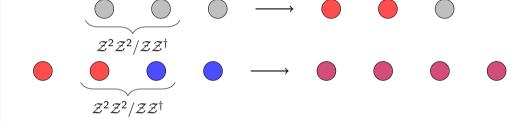
 $\mathcal{Z}^2\mathcal{Z}^2$ and $\mathcal{Z}\mathcal{Z}^\dagger$ measurements create/merge \mathbb{Z}_2 clusters:

Background a

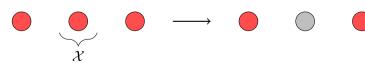
Theory

Methods

Regulte



 ${\mathcal X}$ removes a site from a \mathbb{Z}_2 cluster



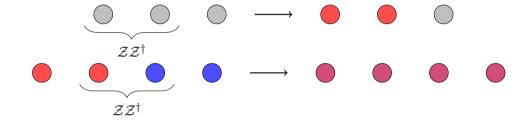
Caltech \mathbb{Z}_4 Clusters

Background an

Methods

Results

 $\mathcal{Z}\mathcal{Z}^{\dagger}$ measurements create/merge \mathbb{Z}_4 clusters:



 ${\mathcal X}$ and ${\mathcal X}^2$ measurements remove a site from a \mathbb{Z}_4 cluster

Caltech Entanglement Measurement

Motivation

Background an Theory

Methods

Results

Values must be sample-averaged over thousands of trajectories

- Entanglement Entropy $S(\{s_1,\ldots,s_{n/2}\})$
 - 1 Partition qudit chain into two halves
 - 2 Count \mathbb{Z}_2 and \mathbb{Z}_4 clusters which cross the cut
- Mutual Information $I(s_1; s_{n/2})$
 - 1 For each cluster type, check if the two qudits are in the same cluster
 - 2 If they are in different clusters, do nothing to the mutual information.
 - 3 If there are no other qudits in the same cluster, add 2 to the total information, otherwise add 1.

Caltech Table of Contents

Motivation

Background ar Theory

Method

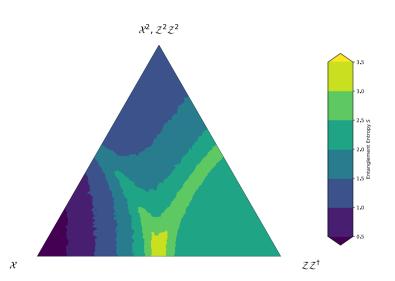
- Motivation
- 2 Background and Theory
- 3 Methods
- 4 Results

Caltech Entanglement Entropy

Motivation

Background and

Methods

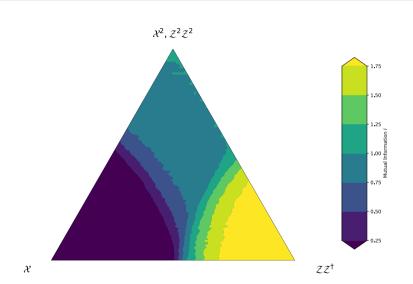


Caltech Mutual Information

Motivation

Background and

Methods

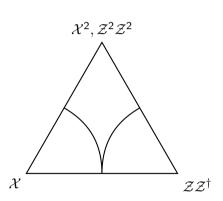


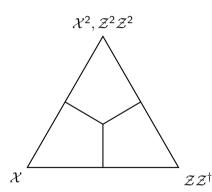
Caltech Phase Diagram Comparison

Motivation

Background an Theory

Methods





Caltech Coupled $\mathbb{Z}_2 \times \mathbb{Z}_2$ PTIM

NA - AT - AT - -

ackground a

Methods

Results

Can the \mathbb{Z}_4 entanglement transitions be modeled using two coupled \mathbb{Z}_2 chains?

Caltech Coupled $\mathbb{Z}_2 \times \mathbb{Z}_2$ PTIM

Marketon

Background an

Methods

Results

Can the \mathbb{Z}_4 entanglement transitions be modeled using two coupled \mathbb{Z}_2 chains?

Instead of a chain of 4-state qudits, consider two coupled chains of qubits:

$$\mathcal{X} \to X^{(1)}, X^{(2)}$$

$$\mathcal{Z}\mathcal{Z}^{\dagger} \to Z^{(1)}Z^{(1)}, Z^{(2)}Z^{(2)}$$

$$\mathcal{X}^{2}, \mathcal{Z}^{2}\mathcal{Z}^{2} \to X^{(1)}X^{(2)}, Z^{(1)}Z^{(1)}Z^{(2)}Z^{(2)}$$

Caltech

Coupled $\mathbb{Z}_2 \times \mathbb{Z}_2$ PTIM

Results

Can the \mathbb{Z}_4 entanglement transitions be modeled using two coupled \mathbb{Z}_2 chains?

Instead of a chain of 4-state gudits, consider two coupled chains of gubits:

$$\mathcal{X} o X^{(1)}, X^{(2)}$$

$$\mathcal{Z}\mathcal{Z}^{\dagger} o Z^{(1)}Z^{(1)}, Z^{(2)}Z^{(2)}$$

$$\mathcal{X}^{2}, \mathcal{Z}^{2}\mathcal{Z}^{2} o X^{(1)}X^{(2)}, Z^{(1)}Z^{(1)}Z^{(2)}Z^{(2)}$$

For the entanglement transitions we are studying, we can develop an equivalent cluster model for $\mathbb{Z}_2 \times \mathbb{Z}_2$

Mastinastan

Background an

Methods

Results

Can the \mathbb{Z}_4 entanglement transitions be modeled using two coupled \mathbb{Z}_2 chains?

Instead of a chain of 4-state qudits, consider two coupled chains of qubits:

$$\mathcal{X} o X^{(1)}, X^{(2)}$$

$$\mathcal{Z}\mathcal{Z}^{\dagger} o Z^{(1)}Z^{(1)}, Z^{(2)}Z^{(2)}$$

$$\mathcal{X}^{2}, \mathcal{Z}^{2}\mathcal{Z}^{2} o X^{(1)}X^{(2)}, Z^{(1)}Z^{(1)}Z^{(2)}Z^{(2)}$$

For the entanglement transitions we are studying, we can develop an equivalent cluster model for $\mathbb{Z}_2\times\mathbb{Z}_2$

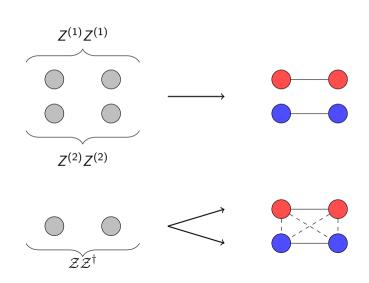
Are these two models completely equivalent in terms of entanglement behavior?

Caltech Interlayer Entropy

Motivation

Background ar Theory

Methods



Caltech Conclusions

Motivation

Background an Theory

Methods

Results

Altogether, we conclude the following:

- \mathbb{Z}_4 has three phases
- ullet \mathbb{Z}_4 has different symmetry from equivalent clock model
- \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ have equivalent entanglement transitions
- \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ differ in interlayer entropy

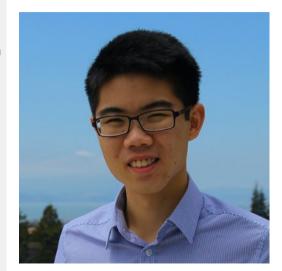
Caltech Acknowledgements

Motivation

Background an Theory

Methods

Results



I would like to thank Dr. Nat Tantivasadakarn for his invaluable guidance, mentorship, and insights throughout this project.