

Combinatorial genomic and epigenomic analysis of plasma cell-free DNA identifies stemness features associated with worse prognosis in high-risk metastatic castration

resistant prostate cancer

Savar Sinha
Undergraduate Student
Chaudhuri Lab

Outline

- General Background Information
 - Prior Research
- Current project
 - Methods
 - Results and Discussion
 - Methylation
 - Nucleosome profiling
 - Stemness Analysis

Prostate Cancer

- How common is prostate cancer?
 - Prostate cancer is the most common cancer among American men other than skin cancer.
 - About 288,300 new cases of prostate cancer
- Risk of Prostate Cancer
 - About 1 man in 9 will be diagnosed with prostate cancer during lifetime

- Death from Prostate Cancer
 - Prostate cancer is the second leading cause of cancer death among men in USA behind lung cancer
 - About 34,700 deaths from prostate cancer

Nature Reviews | Cancer

Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer

Graphical Abstract

Authors

David A. Quigley, Ha X. Dang, Shuang G. Zhao, ..., Christopher A. Maher, Eric J. Small, Felix Y. Feng

Correspondence

arul@med.umich.edu (A.M.C.), christophermaher@wustl.edu (C.A.M.), eric.small@ucsf.edu (E.J.S.), felix.feng@ucsf.edu (F.Y.F.)

In Brief

Integrative whole-genome and
-transcriptome sequencing provides a
comprehensive view of structural
variations that affect major regulators in
prostate cancer and would escape
detection by exome-based approaches.

AR gene body and enhancer are commonly altered in mCRPC

Tumor sequencing of 101 mCRPCs

81% of tx-resistant patients had amplification of an enhancer region 624 kb upstream of AR, 11% more than had gene body alterations.

Highlights

- Deep whole-genome and -transcriptome sequencing of 101 prostate cancer metastases
- Tandem duplication affects intergenic regulatory loci upstream of AR and MYC
- Inactivation of CDK12, TP53, and BRCA2 affect distinct classes of structural variants
- Androgen receptor is affected by mutation or structural variation in 85% of mCRPC

Questions

- Can we detect somatic alterations in cell-free DNA from metastatic prostate cancer patients?
 - Copy number alterations (particularly of AR and AR enhancer)
 - Gene rearrangements (i.e. TMPRSS2-ERG)
 - Single nucleotide variants & indels

Mechanisms of ctDNA release

Liquid biopsy

Corcoran & Chabner, NEJM, 2018

Cell-Free DNA Alterations in the *AR* Enhancer and Locus Predict Resistance to AR-Directed Therapy in Patients With Metastatic Prostate Cancer

Ha X. Dang, PhD^{1,2,3}; Pradeep S. Chauhan, PhD⁴; Haley Ellis, MD^{1,4}; Wenjia Feng, MS⁴; Peter K. Harris, PhD⁴; Grace Smith, BS⁴; Mark Qiao, BS⁴; Katherine Dienstbach, MPH^{1,3}; Rachel Beck, PhD^{1,3}; Andrew Atkocius, BS^{1,3}; Faridi Qaium, BS⁴; Jingqin Luo, PhD⁵; Jeff M. Michalski, MBA, MD^{3,4}; Joel Picus, MD^{1,3}; Russell K. Pachynski, MD^{1,3}; Christopher A. Maher, PhD^{1,2,3,6}; and Aadel A. Chaudhuri, MD, PhD^{3,4,6,7,8}

Landscape of Somatic and Structural Alterations in Metastatic Prostate Cancer cell-free DNA

AR locus alterations apparent in cell-free DNA in 45% of AR-directed treatment-resistant cases.

AR locus alterations portended resistance with high sensitivity and specificity.

AR locus alterations predict primary resistance to AR-directed therapy

Dang, Chauhan, Ellis,..., Chaudhuri, JCO PO, 2020

Can we learn more about the underlying biology of high-risk mCRPC by studying cfDNA epigenomics?

Combinatorial genomic and epigenomic cfDNA analysis of high-risk mCRPC

Kaplan-Meier analysis in plasma cfDNA samples analyzed prior to first-line ARSI treatment for AR enhancer region

Pre-treatment samples (63)

AR enhancer region associate with worse clinical outcomes in mCRPC patients treated with first-line AR-directed therapy

Top 50 hypomethylated DMRs in pre-treatment cfDNA

Can we infer epigenomic or transcriptomic features from cfDNA fragmentomics profiling

Griffin – Nucleosome profiling of cell-free DNA

≥ 0.1x

Whole Genome

Sequencing

GC-corrected

Murtaza & Caldas. Nature Genetics, 2016

3. Average all sites in a group
(e.g. tissue, subtype, transcription factor)

Site 1

Mean of coverage

Transcriptional Regulation
Chromatina accessibility
Transcription factor binding site

Cancer Detection
Tumor Subtype
Tumor Phenotype

Cancer patient plasma

cell-free DNA

Cancer & subtype-specific differential chromatin accessibility

Transcription factor binding sites

ATAC-seq

ChIP-seq

Nucleosome position reflects important cellular process: Transcriptional regulation, Transcription factor binding

1. Calculate fragment-based GC bias

2. Compute GC-corrected fragment midpoint coverage per site

GC bias

Central coverage profiles for TFBS sites corresponding to transcription factors, GRHL2 and MECOM in high-risk mCRPC patients

Top 20 most accessible TFs in high-risk patients

TFBS cfDNA methylation analysis

Log 2 (low-risk mCRPC/high-risk mCRPC)

Top 20 least accessible TFs in high-risk patients

TFBS cfDNA methylation analysis

Top 20 transcription factor less accessible in high-risk mCRPC

LYL1
MECOM
MAFF
CEBPA
FOXO1
MAFK
HIC1
SPIB
MEF2A
GFI1
NR4A1
MEF2C
BCL11A
SPI1
ZBTB16
BACH2
ZFX
RUNX3
TCF3
SMAD5

Most and least accessible TFs fold change comparison

Relative expression of transcription factor in 496 prostate adenocarcinoma tumors profiled by TCGA

Gene enrichment analysis of top 20 transcription factor accessible in highrisk mCRPC

Stemness analysis

CytoTRACE: Identify the stem-cell signatures

CytoTRACE cell score

Each cell is given a stemness score

- 1: More stem-like
- 0: Less stem-like

CytoTRACE Gene score

Each cell state-specific gene is given a score

- 1: Genes correlated with more more stem-like features
- 0: Genes correlated with less stem-like features

CytoTRACE on mCRPC scRNA-Seq cohort

He & Allen et al. Nature medicine, 2021

Enrichment of a stemness signature in cell-free DNA in high-risk patients

Enrichment of a stemness signature in cell-free DNA in high-risk patients

cfDNA stemness metagene Kaplan-Meier analysis

Stem-like signature also predicts survival in bulk RNA-seq data (External cohort of 80 mCRPC patients from Abida et al. *PNAS*, 2019)

Summary & Future Directions

- Plasma cell-free DNA alterations in the AR/enhancer locus correlate with significantly worse outcomes in mCRPC patients
- Transcriptional profiles of mCRPC can be predicted from cell-free DNA epigenomics (methylation and fragmentomics)
- Higher-risk mCRPC patients have a more stem-like signature profile as inferred from plasma cell-free DNA epigenomics, which correlates with worse survival outcomes
- It will be important to independently validate these findings with outside cohorts, and perform further cfDNA-tumor cross-correlative analyses

Chaudhuri Lab

Aadel Chaudhuri, MD PhD

Peter Harris, PhD

Abul Usmani, PhD

Noah Earland, BS

Nicholas Semenkovich, MD PhD

Jeffrey Szymanski, MD PhD

Pradeep Chauhan, PhD

Alex Shiang, MD

Irfan Alahi, MS

Paul Jones, BS

Erik Storrs, BS

Faridi Qaium, BS

Gabris Ni

Savar Sinha

Prathamesh Chati

Kaylee Chien

Chloe Sachs

Lilli Greiner

Andrew Chen

Breanna Yang

http://chaudhurilab.wustl.edu

Acknowledgements

Patients & their families

Chaudhuri Lab Alumni

Bruna Pellini – Moffitt (Asst Prof)
Haley Ellis – Dana Farber (Fellow)
Rummi Babbra – Rochester (Fellow)
Grace Smith – Harvard (MSTP)
Re-I Chin – WashU (RO Chief Res)
Kevin Chen – WashU (RO Resident)
Wenjia Feng – WashU (PhD student)
Armaan Nallicheri – Penn (Med stud)

Funding Sources

NIH/NIGMS R35 GM142710 NIH/NIBIB R01 EB030102 NIH/NCI P50 CA196510 NIH/NCI U2C CA252981 NIH/NCI K08 CA238711 NIH/NCATS UL1 TR002345 Melanoma Research Alliance V Foundation V Scholar Alvin Siteman Foundation Cancer Research Foundation Children's Discovery Institute Children's Tumor Foundation **Emerson Collective** Rabushka Fund