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Prostate Cancer

* How common is prostate cancer?

— Prostate cancer is the most common cancer among American men other than skin
cancer.

— About 288,300 new cases of prostate cancer

* Risk of Prostate Cancer
— About 1 man in 9 will be diagnosed with prostate cancer during lifetime

 Death from Prostate Cancer

— Prostate cancer is the second leading cause of cancer death among men in USA
behind lung cancer
— About 34,700 deaths from prostate cancer

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023



Cancer cell

A Co-activator
A Co-repressor

.....

Nature Reviews | Cancer

Mills, Nature, 2014
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Genomic Hallmarks and Structural Variation in
Metastatic Prostate Cancer
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AR gene body and enhancer are commonly altered in mCRPC

81% of tx-resistant
patients had
amplification of an
enhancer region 624
Kb upstream of AR,
11% more than had
gene body
alterations.

Quigley & Dang et al, Cell, 2018
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Highlights

* Deep whole-genome and -transcriptome sequencing of 101 prostate cancer
metastases

« Tandem duplication affects intergenic regulatory loci upstream of AR and
MYC

* |nactivation of CDK12, TP53, and BRCAZ2 affect distinct classes of structural
variants

| Androgen receptor is affected by mutation or structural variation in 85% of
MCRPC




Questions

o Can we detect somatic alterations in cell-free DNA from metastatic
prostate cancer patients?
- Copy number alterations (particularly of AR and AR enhancer)
- Gene rearrangements (i.e. TMPRSS2-ERG)
- Single nucleotide variants & indels



Mechanisms of ctDNA release

Apoptosis Necrosis Phagocytosis Secretion

Chin et al., Molecular Diagnosis & Therapy, 2019



Liquid biopsy
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Cell-Free DNA Alterations in the AR Enhancer and
“Locus Predict Resistance to AR-Directed Therapy
In Patients With Metastatic Prostate Cancer
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JCO Precision Oncology 2020



Landscape of Somatic and Structural Alterations in Metastatic Prostate Cancer
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AR locus alterations predict primary resistance to AR-
directed therapy
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Can we learn more about the underlying biology of high-risk mCRPC
by studying cfDNA epigenomics?



Current Project



Combinatorial genomic and epigenomic cfDNA analysis of high-risk mCRPC

99 Patients with metastatic
'N‘ castration-resistant prostate

cancer (mCRPC)

Androgen receptor-
signaling inhibitor (ARSI)

O

' - Patients treated with
s

a® Blood samples collected Y Blood samples collected /cytoTRACE analysis
\\ during the first line ARSI ' before starting the first line (12 scRNA-seq mCRPC
therapy (n = 36) \ ARSI therapy (n = 63) samples)

DNA from plasma

{é}éfb Isolation of cell-free

A J

ety @ -G -
signatures related
/ to stemness

v
Genomic profiling and
) AR SV analysis
BB 1 1

. (EnhanceAR-Seq) ( \
Genome-wide cfDNA
— ﬁ@ methylation

sequencing (EM-Seq)

Stemness
T

U

Correlation of stemness

: s . = : Less stem-like
signature withrisk & = -
survival by plasma T e

methylation e

l = Risk Stratification and

3 40

Survival prediction

A\

T

TFBS accessibility & gene | .
enrichment analysis identifies ; ’ J

\ j chway related to stemness mmim J

| | “#e# 2 Nucleosome profiling of

— plasma cfDNA (Griffin)

jerage.




Kaplan-Meier analysis in plasma cfDNA samples analyzed prior to first-line ARSI
treatment for AR enhancer region

Pre-treatment samples (63)
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cfDNA methylation : Genome-wide distribution of significantly hypomethylated DMRs in pre-
treatment plasma

Top 50 hypomethylated DMRs in pre-treatment cfDNA
1.0q P <0.0001

High-risk mCRPC Low-risk mCRPC

AR_ENHANCER

SMIM10
PAGET
PDCD2L
MSN
OR4D6
TuT?
NXF5
KCNQ3
DNASET
SH2D3C
DIXDC1
CPNE1
MED25
SLC35A2
RANBP2
ACKR4
TRAF1

o
o
1

o
o))
1

GSDMC
CDK11B
KDMS5C
RBFOX1
KRTAP5-11
EEF1D
TMEM2258
KRTAPS-7
UPF3B

Promoter methylation rate
o
T

NSA2
SEPTING
ZC3H12B
EXOC2
ATP8B3
SCML1
KLHL36
cD163
TNFAIP2
LRRC3B
ARHGAP45
NSMCE2
BANF1
ANKRD26

o
N
I

0.0 . .

GLTeD1
FAM107A
DCTNS
BAGS
ZC3H4




Can we infer epigenomic or transcriptomic features from cfDNA fragmentomics profiling

Sequencing coverage
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Central coverage profiles for TFBS sites corresponding to transcription factors,
GRHL2 and MECOM In high-risk mCRPC patients
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Top 20 most accessible TFs in high-risk patients

TFBS cfDNA methylation analysis

Top 20 transcription factor more accessible in
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Top 20 least accessible TFs in high-risk patients

TFBS cfDNA methylation analysis

Top 20 transcription factor less accessible in high-risk
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Most and least accessible TFs fold change comparison

Relative expression of transcription factor in 496 prostate
adenocarcinoma tumors profiled by TCGA
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Gene enrichment analysis of top 20 transcription factor accessible in high-

risk mCRPC
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Stemness analysis



CytoTRACE : Identify the stem-cell signatures
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CytoTRACE on mCRPC scRNA-Seq cohort
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Enrichment of a stemness signature in cell-free DNA in high-risk patients
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Promoter-level cfDNA methylation analysis
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Enrichment of a stemness signature in cell-free DNA In high-risk patients
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cfDNA stemness metagene Kaplan-Meier analysis
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Stem-like signature also predicts survival in bulk RNA-seq data
(External cohort of 80 mCRPC patients from Abida et al. PNAS, 2019)
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Summary & Future Directions

 Plasma cell-free DNA alterations in the AR/enhancer locus correlate
with significantly worse outcomes in mCRPC patients

 Transcriptional profiles of mMCRPC can be predicted from cell-free DNA
epigenomics (methylation and fragmentomics)

* Higher-risk mCRPC patients have a more stem-like signature profile as
Inferred from plasma cell-free DNA epigenomics, which correlates with
worse survival outcomes

* It will be important to independently validate these findings with outside
cohorts, and perform further cfDNA-tumor cross-correlative analyses
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